Multidimensional K-Anonymity
نویسندگان
چکیده
K-Anonymity has been proposed as a mechanism for privacy protection in microdata publishing, and numerous recoding “models” have been considered for achieving kanonymity. This paper proposes a new multidimensional model, which provides an additional degree of flexibility not seen in previous (single-dimensional) approaches. Often this flexibility leads to higher-quality anonymizations, as measured both by general-purpose metrics, as well as more specific notions of query answerability. In this paper, we prove that optimal multidimensional anonymization is NP-hard (like previous k-anonymity models). However, we introduce a simple, scalable, greedy algorithm that produces anonymizations that are a constantfactor approximation of optimal. Experimental results show that this greedy algorithm frequently leads to more desirable anonymizations than two optimal exhaustive-search algorithms for single-dimensional models.
منابع مشابه
Achieving Multidimensional K-Anonymity by a Greedy Approach
Protecting privacy in microdata publishing is K-Anonymity, Here recoding “models” have been considered for achieving k anonymity[1,2]. We proposes a new multidimensional model, which gives high flexibility. Often this flexibility leads to higher-quality anonymizations, as measured both by general-purpose metrics and more specific notions of query answerability. Like previous multidimensional mo...
متن کاملAchieving Multidimensional K-Anonymity by a Greedy Approach
Protecting privacy in microdata publishing is K-Anonymity, Here recoding “models” have been considered for achieving k anonymity[1,2]. We proposes a new multidimensional model, which gives high flexibility. Often this flexibility leads to higher-quality anonymizations, as measured both by generalpurpose metrics and more specific notions of query answerability. Like previous multidimensional mod...
متن کاملMulti-dimensional k-anonymity Based on Mapping for Protecting Privacy
Data release has privacy disclosure risk if not taking any protection policy. Although attributes that clearly identify individuals, such as Name, Identity Number, are generally removed or decrypted, attackers can still link these databases with other released database on attributes (Quasi-identifiers) to re-identify individual’s private information. K-anonymity is a significant method for priv...
متن کاملMulti-dimensional K-anonymity based on Mapping for Protecting Privacy1
Data release has privacy disclosure risk if not taking any protection policy. Although attributes that clearly identify individuals, such as Name, Identity Number, are generally removed or decrypted, attackers can still link these databases with other released database on attributes (Quasi-identifiers) to re-identify individual’s private information. K-anonymity is a significant method for priv...
متن کاملKANIS: Preserving k-Anonymity Over Distributed Data
In this paper we describe KANIS, a distributed system designed to preserve the privacy of multidimensional, hierarchical data that are dispersed over a network. While allowing for efficient storing, indexing and querying of the data, our system employs an adaptive scheme that automatically adjusts the level of indexing according to the privacy constrains: Efficient roll-up and drill-down operat...
متن کامل